Preconditioning and Acute Effects of Flavonoids in Protecting Cardiomyocytes from Oxidative Cell Death

نویسندگان

  • Masoumeh Akhlaghi
  • Brian Bandy
چکیده

While flavonoids can reportedly protect against cardiac ischemia-reperfusion injury, the relative effectiveness of different flavonoids and the mechanisms involved are unclear. We compared protection by different flavonoids using rat embryonic ventricular H9c2 cells subjected to simulated ischemia-reperfusion (IR) and to tert-butyl hydroperoxide (t-buOOH). Characterization of the IR model showed the relative contributions of glucose, serum, and oxygen deprivation to cell death. With long-term (2-3 day) pretreatment before IR the best protection was given by catechin, epigallocatechin gallate, proanthocyanidins, and ascorbate, which protected at all doses. Quercetin protected (34%) at 5 μM but was cytotoxic at higher doses. Cyanidin protected mildly (10-15%) at 5 and 20 μM, while delphinidin had no effect at 5 μM and was cytotoxic at higher doses. Comparing long-term and acute protection by catechin, a higher concentration was needed for benefit with acute (1 hr) pretreatment. With a pure oxidative stress (t-buOOH) only quercetin significantly protected with 3-day pretreatment, while with short-term (1 h) pretreatments protection was best with quercetin and epigallocatechin gallate. The results suggest catechins to be especially useful as IR preconditioning agents, while quercetin and epigallocatechin gallate may be the most protective acutely in situations of oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Death and Survival of Cardiomyocytes in Acute Ischemia

Ischemia is the most common and important cause of injury to cardiomyocytes. Acute ischemia causes profound derangement of the cellular energetics and metabolism, and this ultimately leads to cell death. Experimental studies have demonstrated the presence of an endogenous protective mechanism that can diminish or delay cell death from ischemic insult; this is known as ischemic preconditioning. ...

متن کامل

Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes.Materials and Methods: The cells were pretreated 2...

متن کامل

Reduction of hemorrhagic shock–induced acute kidney injury by lower limb ischemic preconditioning in rats

Introduction: During hemorrhagic shock (HS), the kidneys are one of the primary target organs involved. Oxidative stress is shown to be enhanced in different models of acute kidney injury (AKI). Remote ischemic preconditioning (RPC) by brief limb ischemia is considered to be a safe method to protect different organs from further damage. In this study, we investigated the effects of brief hind l...

متن کامل

Role of mineralocorticoid receptors in the mediation of acute effects of hydrocortisone in isolated ischemic rat heart

Introduction: Cardiac preconditioning is an important method to reduce the damage caused by prolonged ischemia. Previous studies have shown that corticosteroids have protective effects on the heart, however at high concentrations this effect may be reduced with unknown mechanisms. We hypothesize that the contradictory effects of hydrocortisone at high concentration may be mediated via minera...

متن کامل

Portulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis

Abstract  Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012